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Abstract
The entropy production in the problem of the radial displacement of a fluid in the Hele–Shaw
cell is determined. The morphological stability of the interface between the displaced and
displacing fluids is studied using the linear analysis for stability and the maximum entropy
production principle. Regions, in which different forms of the interface can coexist, are
predicted. These regions are analyzed depending on the cell size, the injected flow rate, and the
ratio of the fluid viscosities.

1. Introduction

Investigators have long been interested [1–4] in the patterns
that take shape as one less viscous fluid displaces the other
in quasi-two-dimensional cells (Hele–Shaw cells), because of
the diversity and beautiful appearance of the structures formed
in simple experiments and the possible use of the results for
solving environmental protection and petroleum production
problems. From the theoretical standpoint this problem is
also interesting since such problems can easily be reduced
to sufficiently simple1 and plausible mathematical models,
which lend themselves to analytical analysis and demonstrate
an interesting behavior. One of the issues receiving special
emphasis is the study of the stability or instability of the
interface between moving fluids. A perturbation (typically
a harmonic one) is introduced by some means into a model
and is analyzed. If the perturbation increases with time, the
initial form is said to lose its stability. Usually this analysis
can only be performed as a linear or a weakly nonlinear
approximation [6–11]. Obviously, the interface stability to
sufficiently small perturbations can only be judged from such
calculations.

In recent decades an idea has emerged that the
entropy production principle can be used to select from
the different regimes of development of nonequilibrium
evolving systems [12–14]. For example, the entropy
production is calculated for competing processes and the

1 If compared with other hydrodynamic instabilities observed in experiments
on Benard and Marangoni instability, laminar-turbulent transitions, etc.

process (the nonequilibrium phase) with the largest entropy
production is assumed to be nonlinearly stable and, hence,
observable with the highest probability. This rule follows
from the maximum entropy production principle, which
has been shown recently to be a fundamental principle
in nonequilibrium thermodynamics and very fruitful in
studies of dissipative systems [14–17]. A similar method
of selection by means of entropy production was used
earlier for analysis of morphological transitions during
nonequilibrium crystallization [13, 18–22]. The analytical
results obtained pointed to the possible coexistence of several
nonequilibrium phases being in qualitative agreement with the
relevant experimental observations. However, the quantitative
comparison of the theoretical results (for example, the
discovered regions of the coexistence) with the experimental
data was practically impossible on account of the considerable
simplifications introduced into the mathematical model of the
phenomenon2 and a very small (fractions of a micrometer)
predicted size of the stability. Therefore it could not be
stated with assurance that the method proposed earlier for
the analysis of the stability of dissipative structures on the
basis of the entropy production was valid. The problem
of the displacement front stability in the Hele–Shaw cell
is thought to be devoid of such shortcomings3. Therefore
the objective of this study is the analytical analysis of the

2 For the problem to possess an analytical solution, crystals were assumed to
have a round or a spherical shape, the anisotropy was neglected, and so on.
3 The mathematical model used for description of the displacement is much
less crude and the experimentally observed critical sizes are much larger (of the
order of centimeters).
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Figure 1. The radial displacement in the Hele–Shaw cell.

stability problem using the entropy production. The radial
fluid displacement will be considered for definiteness. This
study is the first analytical stage of the investigation. The
experimental verification of the theoretical results will be
published elsewhere.

It should be noted that calculations of the entropy
production for analysis of the stability of the fluid front in
the Hele–Shaw cell were used very little in previous studies.
We are aware of two studies only. In the first study [23] it
is concluded, from rather inexact reasoning, that the entropy
production increases considerably as the displacement front of
two immiscible fluids in a porous medium becomes unstable
and fractal structures are formed. No other conclusions,
except the quoted result, pertaining to the topic at hand
were drawn. The author of the second paper [24] tried
to analyze the stability of the radial displacement of two
miscible incompressible fluids. The calculations and the results
presented in this paper provoke some objections. Firstly,
the expression for the entropy production disregards the
contribution from the fluid mixing. Secondly, the work is
extremely inconsistent: the entropy production is minimized
at some calculation stages and is maximized at the others.
Thirdly, the velocity field of the fluids was obtained in the
linear order. This field was then used to calculate the
relationship between the growth rate of the perturbation and
its amplitude and, thus, the total excess energy dissipation rate
(which was the basis of the calculation) proved to be quadratic
relative to the amplitude.

2. Problem statement and the linear stability of the
front

We shall consider a slow quasi-stationary displacement of
a fluid by another fluid in the Hele–Shaw cell (figure 1).
Both fluids are assumed to be immiscible and incompressible.
The motion is quasi-two-dimensional and all characteristics
of the flow are averaged over the cell thickness b. These
approximations are traditional for problems of this type [1–11].

The pressure field in both fluids satisfies the Laplace
equation:

∇2 p1 = 0, (2.1)

∇2 p2 = 0. (2.2)

This is the consequence of the Darcy law Vi = −Mi∇ pi

(Mi = b2/12μi , μi being the fluid viscosity) and the flow
continuity condition ∇ ·Vi = 0. Here pi is the fluid pressure (i
= 1 and 2 for the displacing or the displaced fluid respectively)
and Vi is the fluid velocity.

The pressures satisfy the following boundary condi-
tions [6–10]:

−M1∂p1/∂n|R0
= Q

2π R0
, (2.3)

M1∂p1/∂n|r = M2∂p2/∂n|r , (2.4)

p1 − p2|r = 2ε

b
+ αV γ

n + βK , (2.5)

p2|R∞ = 0, (2.6)

where n is the normal to the surface, Vn is normal velocity
of the interface; R0 is the radius of the hole through which
the displacing fluid is injected at a constant flow rate (Q,
cm2 s−1); R∞ is the size of the Hele–Shaw cell occupied by
the displaced fluid; r is the equation for the interface between
two fluids; ε is the surface tension; K is the surface curvature
in the motion plane; and b is the cell thickness; α, β and γ

are some parameters (according to [2, 3, 10], α = 3.8 2ε
b (μ2

ε
)γ ,

β = πε/4 and γ = 2/3).
We shall assume that an arbitrarily small distortion of the

initially round interface can be presented as a superposition
of harmonic functions of the form cos(nϕ). Considering the
linear order approximation, it suffices to discuss the behavior
of one function so as to understand the stability of the front. In
the polar system of coordinates the equation for the perturbed
surface is written in the form

r = R + δ cos(nϕ), (2.7)

where R is the radius of the unperturbed surface; δ is the
perturbation amplitude; n is the perturbation frequency (see
figure 1); and ϕ is the polar angle.

The linear analysis for the stability [10] gives the
following result:

pi(r, ϕ) = p0
i (r) + p1

i (r, ϕ)δ, (2.8)

where

p0
1 = − Q

2π M1
ln(r/R) − Q

2π M2
ln(R/R∞) + 2ε

b
+ β

R

+ α

(
Q

2π R

)γ

, (2.9)

p0
2 = − Q

2π M2
ln(r/R∞), (2.10)

p1
1 = a1rn cos(nϕ)[1 + (R0/r)2n], (2.11)

p1
2 = a2rn cos(nϕ)[1 − (R∞/r)2n], (2.12)

a1 = R−n

[
Q

2π R

M2 − M1

M1 M2
+ β(n2 − 1)

R2
− αγ

R

(
Q

2π R

)γ]

×
[[

1 + (R0/R)2n
]+ M1

M2

1 − (R/R∞)2n

1 + (R/R∞)2n

2
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× [
1 − (R0/R)2n

]

+ αγ n

(
Q

2π R

)γ 2π M1

Q

[
1 − (R0/R)2n

]]−1

, (2.13)

a2 = R−n

[
Q

2π R

M2 − M1

M1 M2
+ β(n2 − 1)

R2
− αγ

R

(
Q

2π R

)γ]

×
[

M2

M1

1 + (R0/R)2n

1 − (R0/R)2n

[
1 + (R∞/R)2n

]

− [
1 − (R∞/R)2n

]

+ αγ n

(
Q

2π R

)γ 2π M2

Q

[
1 + (R∞/R)2n

]]−1

. (2.14)

From (2.8) to (2.14) it is possible to find the critical
size of the interface linear stability RS when the perturbation
growth rate δ̇ reverses sign from negative (damping) to positive
(growth). According to our earlier results [10], this size is
determined from the equation

δ̇(R) = 0, (2.15)

where

δ̇ = Ṙ

R
δ

{
−1 − n

(
M2

M1
− 1

)

×
[

1 +
(

(n2 − 1)
β

R
− α γ

(
Q

2π R

)γ) 2π

Q

M1 M2

M2 − M1

]

×
(

M2

M1

1 + (R0/R)2n

1 − (R0/R)2n
+ 1 − (R/R∞)2n

1 + (R/R∞)2n

+ nα γ

(
Q

2π R

)γ 2π M2

Q

)−1}
, (2.16)

Ṙ = Q/2π R. (2.17)

Obviously, the linear approximation allows the determina-
tion of the critical size of the stability RS when the interface
of two fluids becomes unstable in the presence of perturbations
having an infinitesimal amplitude. In terms of the classical the-
ory of phase transitions this size may be called the spinodal of
the nonequilibrium transition from the round shape to the fin-
ger (cosine-like) shape.

3. Entropy production during displacement of a fluid
in the Hele–Shaw cell

3.1. General treatment

We shall consider the motion of a displaced homogeneous fluid
in the Hele–Shaw cell. According to [25, 26], the density of the
entropy production in a viscous isotropic incompressible fluid
in a condition of isothermal vortex-free motion can be written
in the form4

σ = −
0

�S : (
0

Grad V )S, (3.1)

where
0

�S and (
0

Grad V )S are symmetrical parts of the stress
and velocity gradient tensors, respectively, with a zero trace.

4 The temperature is omitted from the denominator on the right of the
expression (3.1) because under the isothermal conditions here it is of no
significance for further discussion.

We shall assume that these tensors satisfy the classical linear
relationship [25]

0

�S = −2μ2(
0

Grad V )S. (3.2)

Therefore the entropy production density can be written in
the component form

σ = 2μ2

∑
i,k

(
0

Grad V )S
ik(

0
Grad V )S

ki . (3.3)

For the quasi-two-dimensional motion in the Hele–Shaw
cell (Vz = 0) which is under consideration, the components

of the tensor (
0

Grad V )S in cylindrical coordinates have the
form [26]

(
0

Grad V )S

=
⎛
⎜⎝

∂Vr
∂r

1
2

(
∂Vϕ

∂r − Vϕ

r + 1
r

∂Vr
∂ϕ

)
1
2

∂Vr
∂z

1
2

(
∂Vϕ

∂r − Vϕ

r + 1
r

∂Vr
∂ϕ

)
1
r

(
∂Vϕ

∂ϕ
+ Vr

)
1
2

∂Vϕ

∂z

1
2

∂Vr
∂z

1
2

∂Vϕ

∂z 0

⎞
⎟⎠ .

(3.4)

Therefore equation (3.3) may be rearranged to give

σ = 2μ2

{(
∂Vr

∂r

)2

+ 1

r 2

((
∂Vϕ

∂ϕ

)2

+ 2Vr
∂Vϕ

∂ϕ
+ V 2

r

)

+ 1

2

[
1

r 2

(
∂Vr

∂ϕ

)2

+ 2

r

∂Vr

∂ϕ

(
∂Vϕ

∂r
− Vϕ

r

)
+
(

∂Vϕ

∂r

)2

− 2

r
Vϕ

∂Vϕ

∂r
+ 1

r 2
V 2

ϕ

]}
+ μ2

[(
∂Vr

∂z

)2

+
(

∂Vϕ

∂z

)2
]

.

(3.5)

This expression can be divided into two parts: the
first part corresponds to the energy dissipation in the plane
(r, ϕ), while the second part reflects the energy dissipation
in the direction z, which is perpendicular to the fluid flow.
Thus, in accordance with (3.5), the calculation of the entropy
production requires that we know the three-dimensional field
of the fluid velocity, but this knowledge is difficult to derive for
many problems of hydrodynamics. However, the formula (3.5)
can be considerably simplified for some hydrodynamic flows
since many terms make a negligibly small contribution to the
general dissipation. For example, referring to the problem
formulated in section 2, we can write, in line with (2.8)–(2.12)
and the Darcy law, for the displaced fluid:

Vr = −M2
∂p2

∂r
= Q

2πr
−M2δa2n cos(nϕ)(rn−1+R2n

∞ r−(n+1)),

(3.6)

Vϕ = − M2

r

∂p2

∂ϕ
= M2δna2 sin(nϕ)(rn−1 − R2n

∞ r−(n+1)).

(3.7)
Taking into account (3.6) and (3.7), the expression (3.5)

can be considerably simplified by omitting the terms
containing higher than the first order with respect to δ:

σ ≈ 2μ2

{(
∂Vr

∂r

)2

+ 1

r 2

(
2Vr

∂Vϕ

∂ϕ
+ V 2

r

)}
+ μ2

(
∂Vr

∂z

)2

.

(3.8)

3
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Considering the problem statement (section 2) the
components of the flow velocity (r, ϕ) across the Hele–Shaw
cell are constant and are zero in the planes bounding the cell.
To calculate the entropy production density of a small element
of the volume having an area r dr dφ and thickness5 b, we
shall assume that the fluid velocity decreases from Vr to zero
in a narrow layer near the interface. In this case Vr/b is the
lower estimate of the last term in (3.8). If we are interested
in the entropy production far from the hole through which the
displacing fluid is injected (r � R0), and since the thickness
of the cell is small (b < R0), then on account of (3.6) and (3.7)
the first term in (3.8) can be neglected:

σ ≈ μ2

(
Vr

b

)2

. (3.9)

Thus, from (3.9) it is fairly simple to calculate6 the
entropy production for the displacement problem under
consideration. This formula may prove to be insufficiently
exact for determination of the absolute value of the entropy
production. However, exact numerical values of σ are of no
interest in this study and, as we shall see in section 3.2, the
above assumption does not lead to errors.

Equation (3.9) can be derived in a simpler way for the
flow under consideration. The energy dissipation is due to the
work done per unit time (the power) by viscous friction forces
counteracting the fluid flow. Since we consider a stationary
flow at a velocity V , these forces are equal to the pressure
gradient forces and, hence,

σ = −V · ∇ p (3.10)

up to unessential constant factors.
Let us use the Darcy law and express the pressure gradient

in terms of the velocity; then, using (3.6) and (3.7), write as a
linear approximation:

σ ≈ μ2

b2
V 2 ≈ μ2

(
Vr

b

)2

.

The last expression exactly coincides with (3.9).
Let us make some comments on the application of (3.9) to

the problem at hand.

(1) When one fluid is displaced by another fluid, the entropy
is produced during motion of both fluids. The calculations
for the displaced fluid (specifically, by equations (3.6)
and (3.7)) are given in the foregoing. Obviously, a formula
similar to (3.9) can also be deduced for the displacing
fluid7. If the displacing fluid viscosity is assumed to be
negligibly low, the energy dissipation by the motion of the
displacing fluid may be neglected in the calculation of the
total entropy production.

(2) A specific feature of the dissipation problem under
consideration is the presence of both the interface between

5 It is only this calculation of the entropy production averaged over the
thickness of the cell that is possible for the problem formulated in section 2.
6 To the lower estimate to be precise.
7 It will differ from (3.9) by the viscosity and the velocity only.

two moving fluids and the limiting surfaces of the Hele–
Shaw cell (figure 1). The entropy production for one-
phase flows [25, 26] far from interfaces is that discussed
most frequently in the literature. The type of the
problem considered herein is more specific, but has been
considered as well [27, 28]. Notice that within the
given problem statement the difficulties arising from the
presence of two phases can be obviated for the following
reasons. The limiting walls of the Hele–Shaw cell are
assumed to be fully wetted with the displaced fluid, which
forms a thin film as it moves. The fluids are thought to
be absolutely immiscible and the interface is assumed to
be infinitely thin. Therefore it is possible to disregard the
entropy production contributed directly by the interface
to the local entropy production in small finite elements
of the volume even near the interface between the fluids.
The effect of the interface on the energy dissipation of the
moving fluids is due only to a distortion of the pressure
field, leading to a change of motion velocity of the fluids
on account of the boundary condition (2.5).

3.2. Variation of the entropy production upon transition from
the stable to the unstable growth

Let us treat the loss of the morphological stability from
the standpoint of the nonequilibrium thermodynamics. Two
displacement regimes are possible: first with a round interface
between the displacing and displaced fluids and then, when
some critical size is reached, with a cosine-like interface.
The transition from one development regime to the other
may be viewed as a nonequilibrium phase transition. In line
with the maximum entropy production principle [16, 19] the
most probable nonequilibrium phase will be the one with the
maximum entropy production. Correspondingly the point at
which the entropy productions of the two phases are equal is a
specific point. Let us calculate this point8. According to (3.6)
and (3.9), the entropy production density during the motion of
a round interface equals

σ0 ∼ V 2
r =

(
Q

2πr

)2

(3.11)

up to constant factors.
For a cosine-like interface, in accordance with (3.6)

and (3.9) the entropy production density in the linear order has
the form

σp ∼
(

Q

2πr

)2

− Q

π
M2δa2n cos(nϕ)(rn−2 + R2n

∞ r−(n+2)).

(3.12)
Let us compare the entropy productions for the perturbed

p and the unperturbed 0 interface in a volume element of a
unit thickness and an area limited by the angle dϕ. Since we
are only interested in the initial moment of the loss of stability
by the interface, the consideration will apply to the region near

8 For definiteness we shall consider the entropy production during the motion
of a more viscous displaced fluid.

4
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Figure 2. The entropy production near the interface of the fluids as a
function of the interface spacing from the center of the Hele–Shaw
cell. The solid line shows the behavior of the entropy production on
the assumption that the displacement takes place in the absence of
any perturbations. The abrupt change corresponds to the point of the
absolute instability of the round interface as determined from the
linear stability analysis. The dashed line shows the behavior of the
entropy production for the perturbed interface. As soon as the
binodal radius Rb is reached, the entropy production for the
perturbed interface becomes larger than that for the round interface.

the displacement front boundary:

p − 0 = σpr dϕ − σ0 R dϕ

= σp (R + δ cos(nϕ)) dϕ − σ0 R dϕ

≈ −
[(

Q

2π R

)2

+ Q

π
M2 Rn−1a2n

[
1 + (R∞/R)2n

]]

× δ cos(nϕ) dϕ. (3.13)

Thus, the critical size, when the entropy productions are
equal in the two displacement regimes, is found from the
equation

(
Q

2π R

)2

+ Q

π
M2 Rn−1a2n

[
1 + (R∞/R)2n

] = 0. (3.14)

This equation can only be solved numerically for R
and possesses a multitude of solutions. Obviously, only the
solutions that fall within the interval from R0 (the size of
the inlet hole for the displacing fluid) to RS (the size when a
round interface becomes absolutely unstable to infinitely small
perturbations) are physically meaningful. The calculation
shows that basically only one solution of (3.14)9 fits this
interval. This solution is labeled Rb. The numerical analysis
of (3.13) and (3.14) shows that 0 proves to be first larger and
then, starting from the size Rb, smaller than p

10 (figure 2).
In line with the maximum entropy production principle

and [16, 18–22], the size Rb will be taken as the binodal of
a nonequilibrium transition from one type of the displacement
to the other, i.e. the size when the transition from the round to
the cosine-like interface becomes theoretically possible in the
presence of sufficient perturbations. Since at RS the transition
under consideration becomes possible at an infinitely small
perturbation, then, in accordance with [19–22], the region
[Rb, RS] may be called a metastable (coexistence) region,
i.e. the area where one or the other displacement regime
(a nonequilibrium phase) can be observed depending on the
perturbation amplitude. The behavior of this region depending
on the control parameters of the problem will be analyzed in

9 An exception will be noted further in the text.
10 The sign alteration is estimated for the convex part of the interface.

the next section. We shall close this section by making some
comments.

(1) The value of Rb was found by calculating the dissipation
of the displaced fluid. It can be shown however that
precisely the same result can be obtained from the
dissipation of the displacing fluid.

(2) The literature often deals with a considerably simplified
analytical statement of the problem concerning the
displacement in the Hele–Shaw cell [6]. It is assumed that
the cell is infinite (R∞ → ∞) and the hole, through which
the fluid is displaced, is infinitely small (R0 → 0); the
viscosity of the displacing fluid is neglected, M1 → ∞;
and it is taken that α = 0 and β = ε. In the given
approximation the radii of the spinodal and the binodal
are respectively equal to

Rs,lim = n(n + 1)
2πεM2

Q
,

Rb,lim = n(n2 − 1)

(2n − 1)

4πεM2

Q
.

(3.15)

It is difficult to use these formulae for quantitative
comparison with relevant experimental data. But
these approximations allow the analysis of the problem
analytically rather than numerically.

4. Morphological diagrams

Let us perform the numerical analysis of the above results.
Figures 3 and 4 present RS and Rb as a function of the cell
size and the flow rate for two displacements: the viscosity of
the displacing fluid is much lower than, or is comparable, with
the viscosity of the displaced fluid.

The results obtained suggest the following:

(1) The binodal and the spinodal exhibit similar behaviors.
These radii become larger as the cell size increases and
smaller as the displacement rate grows. A higher viscosity
of the displacing fluid (figure 4) leads to an increase in the
characteristic sizes of the stability loss. According to the
calculations, the spinodal demonstrates the most specific
behavior at perturbations with n = 1 (the translational
instability): it is independent of the flow rate of the
displacing fluid and has a linear dependence on the cell
size. Notice that the dependence of the binodal on these
parameters is rather weak at this perturbation.

(2) The binodal is always smaller than the spinodal for one
and the same harmonic. However, spinodals and binodals
relating to different disturbing harmonics can mutually
intersect. The higher the viscosity of the displacing fluid,
the larger the number of these intersections. This can be
better appreciated from figure 5. The calculation results
show that as the viscosity ratio increases, the stability radii
first change rather insignificantly, but then start increasing
sharply. The lower the disturbing harmonic, the earlier the
increase begins and, consequently, RS and Rb of adjacent
harmonics start intersecting. The larger the μ1/μ2 ratio,
the greater the number of intersections and, hence, the

5
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Figure 3. Dependence of the spinodal radius RS and the binodal
radius Rb (a) on the cell size R∞ at a constant volume flow rate
Q · b = 0.17 ml s−1 and (b) on the volume flow rate Q · b at a
constant cell size R∞ = 15 cm. The curves were plotted taking
R0 = 2 mm, b = 0.6 mm, ε = 33 × 10−3 N m−1,
μ1 = 1.72 × 10−5 kg m−1 s−1 and μ2 = 4.65 × 10−3 kg m−1 s−1

(the viscosity and the surface tension correspond to those of air and
silicon oil (PMS-5 in Russian classification)). The spinodal and
binodal radii are marked with large and small symbols, respectively.

more diverse and complicated is the sequence of the
morphological transitions from the round to the cosine-
like interfaces. Some examples are given in figure 6. Let
us explain a few of them. At small μ1/μ2 (μ1/μ2 =
0.0003) the sequence of nonequilibrium phases is the
simplest: the initially round interface becomes translation-
unstable at the perturbation with n = 1 starting from
some size Rb and then absolutely unstable to this type of
perturbation when the size equals RS. If μ1/μ2 = 0.05,
the metastable region widens and the number of possible
nonequilibrium phases, which can coexist in this region
depending on perturbations, rises to three (n = 0, 1, 2).
They appear in sequence: a round interface (n = 0) is
observed first, then the phase with n = 1 and, finally,
the phase with n = 2 can appear starting from some

Figure 4. The dependence of the spinodal radius RS and the binodal
radius Rb (a) on the cell size R∞ at a constant volume flow rate
Q · b = 0.15 ml s−1 and (b) on the volume flow rate Q · b at a
constant cell size R∞ = 15 cm. The curves were plotted taking the
same parameters as in figure 3, except μ1 = 1 × 10−3 kg m−1 s−1

(the water viscosity). The spinodal and binodal radii are marked with
large and small symbols, respectively.

size. If the phase with n = 0 does not transform to the
phases with n = 1 and 2 during its metastable growth11,
it will turn into a nonequilibrium phase with n = 2
because in accordance with the calculation the spinodal
radius at n = 2 is the smallest. At μ1/μ2 = 0.2 and
μ1/μ2 = 0.3 the development is still more diverse (five
and six morphological phases can coexist in the metastable
region respectively). The last example with μ1/μ2 = 0.58
is interesting. It shows that the formation sequence of
possible phases in the metastable region does not always
coincide with n. In the given case, nonequilibrium phases
with n = 3 and then with 4, 2 and 5 can appear first, while
the phase with n = 1 will be the last.

It is seen from figure 6 that as μ1/μ2 increases, the
smallest spinodal radius changes successively: from RS for

11 Sufficient perturbations do not occur during development of the phase.
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Figure 5. The dependence of RS/R0 and Rb/R0 on μ1/μ2. The
curves were plotted taking Q · b = 0.4 ml s−1, R∞ = 20 cm,
R0 = 2 mm, b = 0.6 mm, ε = 33 × 10−3 N m−1 and
μ2 = 4.65 × 10−3 kg m−1 s−1. The spinodal and binodal radii are
marked with large and small symbols, respectively.

n = 1 to RS for n = 4. However, the calculation showed that at
large viscosity ratios neighboring spinodal radii can exchange
places more than once. For example, if Q ·b = 0.7 ml s−1 (the
other parameters are similar to those used in figure 5), then the
spinodal for n = 4 is observed as μ1/μ2 changes from 0.4 to
0.52 and the spinodal for n = 5 is observed as μ1/μ2 changes
from 0.52 to 0.56; the spinodal for n = 4 again becomes the
first (the smallest) starting from μ1/μ2 = 0.56. The value of
Rb exhibits an analogous behavior.

Generally, out of the many solutions to the equation (3.14),
only one root fits the interval from R0 to RS, while the other
solutions are beyond this interval and, hence, are devoid of any
physical meaning. However, the numerical analysis suggests
that at n = 1 there is some region of values of the viscosity
ratio and the fluid flow rate where more than one root of

the equation (3.14) can fall within the interval [R0, RS]. For
example, at μ1/μ2 = 0.39, Q = 0.3 ml s−1, b = 0.6 mm,
R0 = 0.2 cm and RS = 15.9 cm the equation (3.14) possesses
three solutions Rb = 0.4, 2.2, 3.4 cm. In line with the
maximum entropy production principle and [16, 18–22] we
can interpret this result in the following way. The phase with
n = 1 appears if p > 0 during the displacement process
and cannot appear12 if p < 0.

5. Conclusion

Thus, possible sequences of morphological transitions during
the displacement of a fluid in the Hele–Shaw cell are predicted
on the basis of the maximum entropy production principle.
The obtained results demonstrate a considerable diversity
of possible morphological phase diagrams. A significant
point is that the calculations can rather easily be verified in
experiments, since the regions, in which a particular shape
of the interface can be observed (singly or jointly with the
others) or be absent (unstable), are clearly defined. The old
theory [6–10, 24] does not provide such advantages. So, the
linear stability analysis allows the determination of just one
boundary, namely the stability to infinitesimal perturbations. It
was not stated what the transition will be (sub-or supercritical)
if the perturbation is not infinitely small. Therefore the
result of any experiment could not contradict the theoretical
prediction since any discrepancy could always be explained as
the perturbations in any real experiment not being infinitesimal.
This experimental unfalsifiability is a considerable drawback
of the linear analysis13. The approach described herein is more
favorable in this respect because the experimental validation
of theoretical results is possible and this validation will be
described in our future papers.

12 In this case only the unperturbed phase exists.
13 A similar reasoning applies to the weakly nonlinear stability analysis [11].

Figure 6. The possible sequence of structures during the displacement in the Hele–Shaw cell at different viscosity ratios μ1/μ2. The
parameters are similar to those used in figure 5.
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